论文标题
增强分布副群回归
Boosting Distributional Copula Regression
论文作者
论文摘要
捕获结果变量之间的复杂依赖性结构(例如,研究终点)在当代生物医学数据问题和医学研究中具有很高的相关性。分布式配置文件回归提供了一种灵活的工具,可以通过解开边缘响应分布及其依赖性结构来对多个结果变量的联合分布进行建模。在回归设置中,Copula模型的每个参数,即边缘分布参数和copula依赖参数,可以通过结构化的添加预测指标与协变量有关。我们提出了一个框架,以通过基于模型的增强算法拟合分布的Copula回归模型。基于模型的增强功能是一种现代估计技术,它结合了有用的功能,例如固有的可变选择机制,参数收缩和在高维数据设置中拟合回归模型的能力,即比观察值更多的协变量的情况。因此,基于模型的增强不仅可以补充该模型类的现有贝叶斯和最大可能性的估计框架,而且还可以启用独特的内在机制,这些机制可以在许多应用问题中有所帮助。在涵盖响应之间有和不依赖性的模拟研究中,评估了在具有连续边缘的Copula回归模型中,我们的增强算法的性能评估。此外,分布型copula的提升用于共同分析和预测新生儿的长度和重量,并在胎儿的超声测量中与其他临床变量一起递送之前。
Capturing complex dependence structures between outcome variables (e.g., study endpoints) is of high relevance in contemporary biomedical data problems and medical research. Distributional copula regression provides a flexible tool to model the joint distribution of multiple outcome variables by disentangling the marginal response distributions and their dependence structure. In a regression setup each parameter of the copula model, i.e. the marginal distribution parameters and the copula dependence parameters, can be related to covariates via structured additive predictors. We propose a framework to fit distributional copula regression models via a model-based boosting algorithm. Model-based boosting is a modern estimation technique that incorporates useful features like an intrinsic variable selection mechanism, parameter shrinkage and the capability to fit regression models in high dimensional data setting, i.e. situations with more covariates than observations. Thus, model-based boosting does not only complement existing Bayesian and maximum-likelihood based estimation frameworks for this model class but rather enables unique intrinsic mechanisms that can be helpful in many applied problems. The performance of our boosting algorithm in the context of copula regression models with continuous margins is evaluated in simulation studies that cover low- and high-dimensional data settings and situations with and without dependence between the responses. Moreover, distributional copula boosting is used to jointly analyze and predict the length and the weight of newborns conditional on sonographic measurements of the fetus before delivery together with other clinical variables.