论文标题
切片和轨道2类的循环二元性
Cyclic duality for slice and orbit 2-categories
论文作者
论文摘要
帕环类别类别的自给性扩展到了(2,1)类别的某些类别类别。这些概括了一个组的轨道类别,并与配备了组成的小组和cosie的某些自我双重预订相关联。切片的2类,不含边界的紧凑型歧管的等二维子手:特定情况,对于$ s^1 $,一个人恢复了环状双重性。这尤其提供了Böhm和stefan对该主题的结果的可视化。
The self-duality of the paracyclic category is extended to a certain class of homotopy categories of (2,1)-categories. These generalise the orbit category of a group and are associated to certain self-dual preorders equipped with a presheaf of groups and a cosieve. Slice 2-categories of equidimensional submanifolds of a compact manifold without boundary form a particular case, and for $S^1$, one recovers cyclic duality. This provides in particular a visualisation of the results of Böhm and Ştefan on the topic.