论文标题

在镜头,双光束,光学陷阱中的大气压力下的轨道动力学

Orbital Dynamics at Atmospheric Pressure in a Lensed, Dual-beam, Optical Trap

论文作者

Raj, Amala, Schaich, William L., Dragnea, Bogdan

论文摘要

使用镜头,反向传播的双光束陷阱和使用射线光学元件的数值模拟对空气中的介电微颗粒的轨道光学捕获进行了实验研究。粒子动力学的基本属性被评估为梁之间的横向偏移的函数,在实验和计算上,激光灶和总激光功率之间的轴向偏移。我们发现,在以前未开发的方案中,轨道运动的Q因子至少比传统陷阱可达到的值高两个数量级。在我们的实验条件下,二氧化硅微电脑在大气压下绕〜2 kHz的最大频率绕,可以通过增加陷阱中的光功率来进一步增加。在模拟的帮助下,我们讨论了如何进一步修改此处介绍的实验技术,以增强粒子轨道运动的Q因子。轨道频率的演变可能是分析在受控环境中悬浮颗粒表面的沉积或材料损失的动力学的有用签名。因此,这里报告的方法可以发现应用是\ emph {int {intu}单粒子技术,用于探测与大气化学相关的反应。

Orbital optical trapping of a dielectric micro-particle in air was studied experimentally using a lensed, counter-propagating dual-beam trap, and by numerical simulations employing ray optics. The essential attributes of particle dynamics are evaluated as functions of the transverse offset between the beams, the axial offset between the laser foci and the total laser power, both experimentally and computationally. We find that the Q-factor of the orbital motion in this previously unexplored scheme is at least two orders of magnitude higher than values attainable with conventional trapping. Under our experimental conditions, silica micro-spheres orbit up to a maximum frequency of ~2 kHz at atmospheric pressure, which can be further increased by increasing the optical power in the trap. With the help of simulations, we discuss how the experimental technique presented here can be further modified to enhance the Q factor of particle's orbital motion. The evolution of orbital frequencies can be a useful signature in analyzing the kinetics of deposition or loss of materials from the surface of levitated particles in a controlled environment. Hence, the approach reported here could find application as an \emph{in situ} single particle technique for probing reactions relevant to atmospheric chemistry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源