论文标题
tife $ _ {0.85} $ Mn $ _ {0.05} $合金在工业级别为氢存储厂生产
TiFe$_{0.85}$Mn$_{0.05}$ alloy produced at industrial level for a hydrogen storage plant
论文作者
论文摘要
在将氢用作大规模能量载体的使用中,由于储存所需的温度和压力,基于金属间化合物的金属氢化物起着关键作用。越来越有必要开发基于氢的设备,在这项工作中,将评估并选择为H $ _2 $的50 kg os H $ _2 $的存储系统的金属间化合物$ _ {0.85} $ Mn $ _ {0.05} $。在工业水平合成了5千克合金,并通过扫描电子显微镜和粉末X射线衍射来确定结构和相丰度。此外,通过热力学和动力学分析研究了氢吸附性能,然后进行了长期的骑自行车研究,对O $ _2 $和H $ _2 $ o中毒的抵抗力。比较具有相同名义组成但在工业或实验室条件下制备的合金的结果,发现合金合成促进了相丰度和微观结构中的差异,并促进了对氢吸附性能的被动层的形成。制定了基于蒙特卡洛模拟和结构结果的计划,以解释被动层($ _3 $ _3 $ fe $ _3 $ o)和二级阶段(ti $ _4 $ _4 $ _2 $ _2 $ _2 $ o $ $ _ {0.4} $ {0.4} $和$β$ -Ti $ -ti $ _ {80} $ _ {80} $ _ 2 $ _ 2 $ _ 2 $ _ 2 TIFE $ _ {0.85} $ MN $ _ {0.05} $。基于该合金的存储系统可以与上游的电解器(25 bar)和下游的燃料电池(1 bar)集成为55 $^\ circ $ c,存储1.0 h $ _2 $ wt。%,表现出快速动力学,对氧气的抵抗力,水和氮气含量超过250 cycles,水和氮气气体和稳定性超过250 cycles。
In the use of hydrogen as large-scale energy vector, metal hydrides based on intermetallic compounds play a key role, thanks to mild temperatures and pressures required for the storage. It is increasingly necessary to develop hydrogen-based devices, and in this work, the intermetallic compound TiFe$_{0.85}$Mn$_{0.05}$ is evaluated and selected as H$_2$-carrier for a storage system of 50 kg of H$_2$. A batch of 5 kg of alloy was synthesized at industrial level and characterized through scanning electron microscopy and powder X-ray diffraction, to determine the structure and phase abundance. Moreover, the hydrogen sorption properties were investigated through thermodynamic and kinetic analyses, followed by a long-term cycling study and resistance to O$_2$ and H$_2$O poisoning. Comparing results for alloys with same nominal composition, but prepared either under industrial or laboratory conditions, it was found that the alloy synthesis promotes discrepancies in phase abundance and microstructure and promotes the formation of a passive layer that deeply affect the hydrogen sorption properties. A scheme based on Monte Carlo simulation and structural results was developed to explain the key role of the passive layer (Ti$_3$Fe$_3$O) and of the secondary phases (Ti$_4$Fe$_2$O$_{0.4}$ and $β$-Ti$_{80}$(Fe,Mn)$_2$0) in promoting the hydrogenation of the TiFe$_{0.85}$Mn$_{0.05}$. A storage system based on this alloy can be integrated with an electrolyser upstream (25 bar) and a fuel cell downstream (1 bar) at 55 $^\circ$C, storing 1.0 H$_2$ wt.%, displaying fast kinetic, resistance to oxygen, water and nitrogen gas impurities, and stability over more than 250 cycles.