论文标题

Delta家庭方法的随机控制问题的实用性最大化问题

Delta family approach for the stochastic control problems of utility maximization

论文作者

Ma, Jingtang, Lu, Zhengyang, Cui, Zhenyu

论文摘要

在本文中,我们提出了一种新方法,用于由实用性最大化引起的随机控制问题。主要思想是直接从动态编程方程式开始,并使用Dirac Delta函数和相应的串联表示形式来使用条件密度函数的新表示来计算条件期望。我们获得了值函数的显式串联表示,其系数是通过在以后的时间点与所选基础函数集成的值来表示的。因此,我们能够设置一个递归的集成时间步态方案,以计算在已知的终端条件下,例如,例如实用程序功能。由于Dirac Delta功能在高维度中的张量分解特性,因此可以简单地扩展我们解决高维随机控制问题的方法。该方法的向后递归性质还允许解决随机控制和停止问题,即混合控制问题。我们通过解决一些二维随机控制(和停止)问题来说明该方法,包括经典和粗糙的Heston随机波动率模型下的情况,以及随机局部波动率模型,例如随机Alpha Beta Rho(SABR)模型。

In this paper, we propose a new approach for stochastic control problems arising from utility maximization. The main idea is to directly start from the dynamical programming equation and compute the conditional expectation using a novel representation of the conditional density function through the Dirac Delta function and the corresponding series representation. We obtain an explicit series representation of the value function, whose coefficients are expressed through integration of the value function at a later time point against a chosen basis function. Thus we are able to set up a recursive integration time-stepping scheme to compute the optimal value function given the known terminal condition, e.g. utility function. Due to tensor decomposition property of the Dirac Delta function in high dimensions, it is straightforward to extend our approach to solving high-dimensional stochastic control problems. The backward recursive nature of the method also allows for solving stochastic control and stopping problems, i.e. mixed control problems. We illustrate the method through solving some two-dimensional stochastic control (and stopping) problems, including the case under the classical and rough Heston stochastic volatility models, and stochastic local volatility models such as the stochastic alpha beta rho (SABR) model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源