论文标题

使用辅助任务改善Amharic手写单词识别

Improving Amharic Handwritten Word Recognition Using Auxiliary Task

论文作者

Gondere, Mesay Samuel, Schmidt-Thieme, Lars, Sharma, Durga Prasad, Boltena, Abiot Sinamo

论文摘要

Amharic是埃塞俄比亚联邦民主共和国的官方语言之一。它是使用埃塞俄比亚剧本的语言之一,该语言源自古代,目前是礼仪语言。 Amharic也是埃塞俄比亚使用最广泛的文学文学语言之一。一般而言,Amharic光学特征识别(OCR)的创新和定制研究工作非常有限,尤其是Amharic手写文本识别。在这项研究中,将研究Amharic手写单词识别。最先进的深度学习技术,包括卷积神经网络,以及经常性的神经网络和连接主义的时间分类(CTC)损失,以端到端的方式进行认可。更重要的是,测试了使用Amharic字母的行相似性的辅助任务来补充损失函数的创新方式,以显示基线方法的显着识别改善。这样的发现将促进特定于问题的解决方案,并将对从特定于问题的领域出现的广义解决方案开放见解。

Amharic is one of the official languages of the Federal Democratic Republic of Ethiopia. It is one of the languages that use an Ethiopic script which is derived from Gee'z, ancient and currently a liturgical language. Amharic is also one of the most widely used literature-rich languages of Ethiopia. There are very limited innovative and customized research works in Amharic optical character recognition (OCR) in general and Amharic handwritten text recognition in particular. In this study, Amharic handwritten word recognition will be investigated. State-of-the-art deep learning techniques including convolutional neural networks together with recurrent neural networks and connectionist temporal classification (CTC) loss were used to make the recognition in an end-to-end fashion. More importantly, an innovative way of complementing the loss function using the auxiliary task from the row-wise similarities of the Amharic alphabet was tested to show a significant recognition improvement over a baseline method. Such findings will promote innovative problem-specific solutions as well as will open insight to a generalized solution that emerges from problem-specific domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源