论文标题
具有神经速度场的差异图像登记
Diffeomorphic Image Registration with Neural Velocity Field
论文作者
论文摘要
在许多医学图像分析任务中,需要进行平滑转换和拓扑保存,提供平滑的转换和拓扑保存。传统方法对可允许转换的空间施加了某些建模约束,并使用优化来找到两个图像之间的最佳转换。指定可接受转换的正确空间是具有挑战性的:如果空间过于限制,则注册质量可能会很差,而如果空间过于笼统,则很难解决优化。最新的基于学习的方法,利用深层神经网络直接学习转换,实现快速推断,但是由于难以捕获局部较小的局部变形和泛化能力,因此面临准确性的挑战。在这里,我们提出了一种新的基于优化的方法DNVF(具有神经速度场的差异图像编码),该方法利用深神经网络来模拟可允许转换的空间。具有正弦激活函数的多层感知器(MLP)用于表示连续的速度场,并将速度向量分配给空间的每个点,从而提供了建模复杂变形以及优化的便利性的灵活性。此外,我们通过结合优化和基于学习的方法的益处,提出了一个级联的图像注册框架(CAS-DNVF),其中对完全卷积的神经网络(FCN)进行了训练以预测初始变形,然后进行DNVF,然后进行DNVF以进行进一步改进。在两个大规模3D MR脑扫描数据集上的实验表明,我们提出的方法的表现明显优于最新的注册方法。
Diffeomorphic image registration, offering smooth transformation and topology preservation, is required in many medical image analysis tasks.Traditional methods impose certain modeling constraints on the space of admissible transformations and use optimization to find the optimal transformation between two images. Specifying the right space of admissible transformations is challenging: the registration quality can be poor if the space is too restrictive, while the optimization can be hard to solve if the space is too general. Recent learning-based methods, utilizing deep neural networks to learn the transformation directly, achieve fast inference, but face challenges in accuracy due to the difficulties in capturing the small local deformations and generalization ability. Here we propose a new optimization-based method named DNVF (Diffeomorphic Image Registration with Neural Velocity Field) which utilizes deep neural network to model the space of admissible transformations. A multilayer perceptron (MLP) with sinusoidal activation function is used to represent the continuous velocity field and assigns a velocity vector to every point in space, providing the flexibility of modeling complex deformations as well as the convenience of optimization. Moreover, we propose a cascaded image registration framework (Cas-DNVF) by combining the benefits of both optimization and learning based methods, where a fully convolutional neural network (FCN) is trained to predict the initial deformation, followed by DNVF for further refinement. Experiments on two large-scale 3D MR brain scan datasets demonstrate that our proposed methods significantly outperform the state-of-the-art registration methods.