论文标题
在对称的Orbifolds和D1-D5 CFT中具有多周期字段的四点函数
Four-point functions with multi-cycle fields in symmetric orbifolds and the D1-D5 CFT
论文作者
论文摘要
我们在D1-D5 CFT的免费Orbifold点上研究了两个通用的多循环场和两个Twist-2字段,研究$ s_n $ invariant四点功能。我们从对称组对复合多周期场的作用中得出这些功能的显式分解。除了我们计算的非平凡对称因素外,多周期操作员的功能还原为一组连接的相关器,其中复合场最多具有两个循环。具有两个双周期和两个单个周期字段的相关器给出了主要订单贡献的大体限制。我们为这些功能提供了明确的公式,其中包括单周和双周场的大量选择,包括通用的Ramond接地状态,NS手性磁场和边缘变形操作员。因此,我们能够从短距离操作中提取重要的动力学信息:在相应的轻便和重灯通道中存在的BPS和非BPS场家族的共形维度,R-Charguge和结构常数。我们还使用Pakman,Rastelli和Razamat引起的技术讨论了$ m^n/s_n $ orbifolds中通用多循环$ q $ - 点功能的属性。
We study $S_N$-invariant four-point functions with two generic multi-cycle fields and two twist-2 fields, at the free orbifold point of the D1-D5 CFT. We derive the explicit factorization of these functions following from the action of the symmetric group on the composite multi-cycle fields. Apart from non-trivial symmetry factors that we compute, the function with multi-cycle operators is reduced to a sum of connected correlators in which the composite fields have, at most, two cycles. The correlators with two double-cycle and two single-cycle fields give the leading order contribution in the large-$N$ limit. We derive explicit formulas for these functions, encompassing a large class of choices for the single- and the double-cycle fields, including generic Ramond ground states, NS chiral fields and the marginal deformation operator. We are thus able to extract important dynamical information from the short-distance OPEs: conformal dimensions, R-charges and structure constants of families of BPS and non-BPS fields present in the corresponding light-light and heavy-light channels. We also discuss properties of generic multi-cycle $Q$-point functions in $M^N/S_N$ orbifolds, using a technology due to Pakman, Rastelli and Razamat.