论文标题

kinojgm:在动态环境中的高效,准确四轨轨迹生成和跟踪的框架

KinoJGM: A framework for efficient and accurate quadrotor trajectory generation and tracking in dynamic environments

论文作者

Wang, Yanran, O'Keeffe, James, Qian, Qiuchen, Boyle, David

论文摘要

未塑造的区域和空气动力障碍使四肢的自主导航极具挑战性。为了安全有效地飞行,轨迹规划师和跟踪器必须能够实时浏览具有无法预测的空气动力学效果的未知环境。当遇到空气动力学效应(例如强风)时,大多数当前四次轨迹计划和跟踪的方法也不会试图偏离确定的计划,即使是风险,希望任何空气动力学障碍都能通过强大的控制器来抵抗任何空气动力学干扰。本文提出了一个新型的系统轨迹规划和自动脉动二次的跟踪框架。我们建议在具有空气动力学干扰的未知环境中生成安全有效的途径,以生成安全有效的途径。实时的高斯过程被用来建模空气动力干扰的效果,然后我们将其与模型预测控制器集成,以实现有效而准确的轨迹优化和跟踪。我们证明了我们的系统,将未知环境中轨迹产生的效率提高了多达75 \%的系统,与最近的最新技术相比。我们还证明,我们的系统在具有不可预测的空气动力学效果的选定环境中提高了跟踪的准确性。

Unmapped areas and aerodynamic disturbances render autonomous navigation with quadrotors extremely challenging. To fly safely and efficiently, trajectory planners and trackers must be able to navigate unknown environments with unpredictable aerodynamic effects in real-time. When encountering aerodynamic effects such as strong winds, most current approaches to quadrotor trajectory planning and tracking will not attempt to deviate from a determined plan, even if it is risky, in the hope that any aerodynamic disturbances can be resisted by a robust controller. This paper presents a novel systematic trajectory planning and tracking framework for autonomous quadrotors. We propose a Kinodynamic Jump Space Search (Kino-JSS) to generate a safe and efficient route in unknown environments with aerodynamic disturbances. A real-time Gaussian Process is employed to model the effects of aerodynamic disturbances, which we then integrate with a Model Predictive Controller to achieve efficient and accurate trajectory optimization and tracking. We demonstrate our system to improve the efficiency of trajectory generation in unknown environments by up to 75\% in the cases tested, compared with recent state-of-the-art. We also demonstrate that our system improves the accuracy of tracking in selected environments with unpredictable aerodynamic effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源