论文标题

解决Blackwell的可接近性解决优化问题

Solving optimization problems with Blackwell approachability

论文作者

Grand-Clément, Julien, Kroer, Christian

论文摘要

我们介绍了Conic Blackwell算法$^+$(CBA $^+$)遗憾的最小化器,这是一种新的参数和无标度的遗憾最小化器,用于一般凸套装。 CBA $^+$基于Blackwell的可接近性,并获得$ O(\ sqrt {t})$遗憾。我们展示了如何有效地实例化CBA $^+$,以获取许多兴趣的决策集,包括单纯形,$ \ ell_ {p} $ norm balls和eLlipsoidal置信区域。基于CBA $^+$,我们介绍了SP-CBA $^+$,这是一种用于求解convex-concave鞍点问题的新的无参数算法,它可以达到$ o(1/\ sqrt {t})$ ERGODIC ACRENGENCE。在我们的模拟中,我们证明了SP-CBA $^+$在几个标准的鞍点问题上的广泛适用性,包括矩阵游戏,广泛形式的游戏,分配强大的逻辑回归和马尔可夫决策过程。在每种设置中,SP-CBA $^+$都能达到最新的数值性能,并且胜过经典方法,而无需选择步骤尺寸或其他算法参数。

We introduce the Conic Blackwell Algorithm$^+$ (CBA$^+$) regret minimizer, a new parameter- and scale-free regret minimizer for general convex sets. CBA$^+$ is based on Blackwell approachability and attains $O(\sqrt{T})$ regret. We show how to efficiently instantiate CBA$^+$ for many decision sets of interest, including the simplex, $\ell_{p}$ norm balls, and ellipsoidal confidence regions in the simplex. Based on CBA$^+$, we introduce SP-CBA$^+$, a new parameter-free algorithm for solving convex-concave saddle-point problems, which achieves a $O(1/\sqrt{T})$ ergodic rate of convergence. In our simulations, we demonstrate the wide applicability of SP-CBA$^+$ on several standard saddle-point problems, including matrix games, extensive-form games, distributionally robust logistic regression, and Markov decision processes. In each setting, SP-CBA$^+$ achieves state-of-the-art numerical performance, and outperforms classical methods, without the need for any choice of step sizes or other algorithmic parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源