论文标题

示例性:一种新颖的数据库,用于手写的情绪状态识别

EMOTHAW: A novel database for emotional state recognition from handwriting

论文作者

Likforman-Sulem, Laurence, Esposito, Anna, Faundez-Zanuy, Marcos, Clemençon, Stephan, Cordasco, Gennaro

论文摘要

通过日常活动(例如笔迹)检测负面情绪对于促进幸福感很有用。人机界面(例如平板电脑)的传播使手写样品的收集更加容易。在这种情况下,我们提出了第一个公开可用的手写数据库,该数据库将情感状态与手写相关联,我们称之为富有症状。该数据库包括129名参与者的样本,他们的情绪状态,即焦虑,抑郁和压力,通过抑郁焦虑应激量表(DASS)问卷进行评估。通过数字化的平板电脑记录了七个任务:五角星和房屋图,用手印复制的单词,圆圈和时钟绘图,以及用草书写作复制的一句话。记录由笔位置,纸上和空中,时间戳,压力,笔方位角和高度组成。我们报告了该数据库的分析。根据收集的数据,我们首先计算与时间和管道有关的测量。我们根据写作设备的位置计算单独的测量:在纸上或空中。我们使用随机森林方法分析并分析了这组测量值(称为特征)。后者是一种基于决策树的集合,其中包括功能排名过程,这是一种机器学习方法[2]。我们使用此排名过程来确定最能揭示目标情绪状态的功能。 然后,我们建立与每个情绪状态相关的随机森林分类器。我们的结果是从交叉验证实验获得的,表明可以通过60%至71%的精度来识别目标的情绪状态。

The detection of negative emotions through daily activities such as handwriting is useful for promoting well-being. The spread of human-machine interfaces such as tablets makes the collection of handwriting samples easier. In this context, we present a first publicly available handwriting database which relates emotional states to handwriting, that we call EMOTHAW. This database includes samples of 129 participants whose emotional states, namely anxiety, depression and stress, are assessed by the Depression Anxiety Stress Scales (DASS) questionnaire. Seven tasks are recorded through a digitizing tablet: pentagons and house drawing, words copied in handprint, circles and clock drawing, and one sentence copied in cursive writing. Records consist in pen positions, on-paper and in-air, time stamp, pressure, pen azimuth and altitude. We report our analysis on this database. From collected data, we first compute measurements related to timing and ductus. We compute separate measurements according to the position of the writing device: on paper or in-air. We analyse and classify this set of measurements (referred to as features) using a random forest approach. This latter is a machine learning method [2], based on an ensemble of decision trees, which includes a feature ranking process. We use this ranking process to identify the features which best reveal a targeted emotional state. We then build random forest classifiers associated to each emotional state. Our results, obtained from cross-validation experiments, show that the targeted emotional states can be identified with accuracies ranging from 60% to 71%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源