论文标题

医学图像分析中的变压器:评论

Transformers in Medical Image Analysis: A Review

论文作者

He, Kelei, Gan, Chen, Li, Zhuoyuan, Rekik, Islem, Yin, Zihao, Ji, Wen, Gao, Yang, Wang, Qian, Zhang, Junfeng, Shen, Dinggang

论文摘要

变形金刚占据了自然语言处理领域,最近影响了计算机视觉领域。在医学图像分析的领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器的关键挑战,提高了模型效率及其与其他技术的耦合。我们希望这篇评论能为医学图像分析领域的读者提供全面的变压器图片。

Transformers have dominated the field of natural language processing, and recently impacted the computer vision area. In the field of medical image analysis, Transformers have also been successfully applied to full-stack clinical applications, including image synthesis/reconstruction, registration, segmentation, detection, and diagnosis. Our paper aims to promote awareness and application of Transformers in the field of medical image analysis. Specifically, we first overview the core concepts of the attention mechanism built into Transformers and other basic components. Second, we review various Transformer architectures tailored for medical image applications and discuss their limitations. Within this review, we investigate key challenges revolving around the use of Transformers in different learning paradigms, improving the model efficiency, and their coupling with other techniques. We hope this review can give a comprehensive picture of Transformers to the readers in the field of medical image analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源