论文标题
在2D和3D重力中的因果边界处的对称性
Symmetries at Causal Boundaries in 2D and 3D Gravity
论文作者
论文摘要
我们研究了2D和3D重力理论,该理论具有因果关系(及时或无效)的一个边界,同时允许边界位置变化。我们构建相应的解相空间,并通过分析边界(表面)电荷标记它们来指定边界度自由。我们讨论y和w自由以及解决方案空间中切片的变化。对于d维情况,我们发现D+1表面电荷,这是因果边界上的通用函数。我们表明,有可充电的解决方案空间切片。对于3D案例,存在一个可集成的切片,其中电荷代数采用Heisenberg \ oplus \ {\ cal a} _3的形式,其中{\ cal a} _3是Brown-Hennaeaux Central Central copies virasoro的ADS_3 GRAVITY和BMS_3的Brown-Henneaux Central Charge and BMS_3的3D平面宽度。
We study 2d and 3d gravity theories on spacetimes with causal (timelike or null) codimension one boundaries while allowing for variations in the position of the boundary. We construct the corresponding solution phase space and specify boundary degrees freedom by analysing boundary (surface) charges labelling them. We discuss Y and W freedoms and change of slicing in the solution space. For D dimensional case we find D+1 surface charges, which are generic functions over the causal boundary. We show that there exist solution space slicings in which the charges are integrable. For the 3d case there exists an integrable slicing where charge algebra takes the form of Heisenberg \oplus\ {\cal A}_3 where {\cal A}_3 is two copies of Virasoro at Brown-Henneaux central charge for AdS_3 gravity and BMS_3 for the 3d flat space gravity.