论文标题
在协变量偏移下半监督学习的信息理论方法
An Information-theoretical Approach to Semi-supervised Learning under Covariate-shift
论文作者
论文摘要
半监督学习中的一个常见假设是,标记,未标记和测试数据是从相同的分布中绘制的。但是,在许多应用程序中不满足此假设。在许多情况下,数据是依次收集的(例如医疗保健),并且数据的分布可能会随着时间的流逝而变化,通常会显示出所谓的协变量转移。在本文中,我们提出了一种能够解决此问题的半监督学习算法的方法。我们的框架还恢复了一些流行的方法,包括熵最小化和伪标记。我们提供了受我们新颖框架启发的基于信息理论的新概括错误上限。我们的界限适用于一般的半监督学习和协变量转变场景。最后,我们以数字表明我们的方法优于在协变量转移下为半监督学习提出的先前方法。
A common assumption in semi-supervised learning is that the labeled, unlabeled, and test data are drawn from the same distribution. However, this assumption is not satisfied in many applications. In many scenarios, the data is collected sequentially (e.g., healthcare) and the distribution of the data may change over time often exhibiting so-called covariate shifts. In this paper, we propose an approach for semi-supervised learning algorithms that is capable of addressing this issue. Our framework also recovers some popular methods, including entropy minimization and pseudo-labeling. We provide new information-theoretical based generalization error upper bounds inspired by our novel framework. Our bounds are applicable to both general semi-supervised learning and the covariate-shift scenario. Finally, we show numerically that our method outperforms previous approaches proposed for semi-supervised learning under the covariate shift.