论文标题

通过单色和彩色摄像头融合的室外环境的轻稳定性单眼估计

Light Robust Monocular Depth Estimation For Outdoor Environment Via Monochrome And Color Camera Fusion

论文作者

Jang, Hyeonsoo, Ko, Yeongmin, Lee, Younkwan, Jeon, Moongu

论文摘要

深度估计在SLAM,进程和自主驾驶中起着重要作用。尤其是,由于其成本低,记忆和计算,单眼深度估计是有利可图的技术。但是,由于相机通常由于光线条件而无法获得干净的图像,因此这并不足够预测深度图。为了解决这个问题,已经提出了各种传感器融合方法。即使这是一种强大的方法,传感器融合也需要昂贵的传感器,额外的内存和高计算性能。 在本文中,我们提出了颜色图像和单色图像像素级融合以及立体声匹配,并与部分增强的相关系数最大化。我们的方法不仅胜过所有指标的最新方法,而且在成本,内存和计算方面也有效。我们还通过消融研究来验证设计的有效性。

Depth estimation plays a important role in SLAM, odometry, and autonomous driving. Especially, monocular depth estimation is profitable technology because of its low cost, memory, and computation. However, it is not a sufficiently predicting depth map due to a camera often failing to get a clean image because of light conditions. To solve this problem, various sensor fusion method has been proposed. Even though it is a powerful method, sensor fusion requires expensive sensors, additional memory, and high computational performance. In this paper, we present color image and monochrome image pixel-level fusion and stereo matching with partially enhanced correlation coefficient maximization. Our methods not only outperform the state-of-the-art works across all metrics but also efficient in terms of cost, memory, and computation. We also validate the effectiveness of our design with an ablation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源