论文标题

有效的频率转换在光学跨面中的几何相控制

Efficient frequency conversion with geometric phase control in optical metasurfaces

论文作者

Matsudo, Bernhard Reineke, Sain, Basudeb, Carletti, Luca, Zhang, Xue, Gao, Wenlong, de Angelis, Costantino, Huang, Lingling, Zentgraf, Thomas

论文摘要

由于其在剪裁波前的设计自由,因此,元曲面已成为微型功能非线性光学元件的多功能平台。限制其在功能设备中应用的关键因素是转换效率较低。最近,由高质量因子模式(连续体中的准结合状态)或MIE模式(实现强大的轻度互动)控制的介电元面已成为实现高非线性效率的多产途径。在这里,我们通过使用Pancharatnam-berry相位原理,在数值和实验上证明了一种有效的空间非线性相位控制方法,其三分之二的谐波转换效率为$ 10^{ - 4} $ $ 1/w^2 $。我们发现,磁性MIE共振似乎是第三个谐波响应的主要贡献者,而连续体中准结合状态的贡献可以忽略不计。这是通过基于耦合Anharmonic振荡器的现象学模型来证实的。此外,我们的metasurface在两个极化通道中都提供了实验上的高衍射效率(80-90%)。我们通过实验重建编码的极化旋转涡流阵列来显示我们方法的功能应用,该涡流阵列具有不同的拓扑电荷,在第三个谐波频率上具有高保真度。我们的方法具有潜在的芯片非线性信号处理和波前控制的潜在生存能力。

Metasurfaces have appeared as a versatile platform for miniaturized functional nonlinear optics due to their design freedom in tailoring wavefronts. The key factor that limits its application in functional devices is the low conversion efficiency. Recently, dielectric metasurfaces governed by either high-quality factor modes (quasi-bound states in the continuum) or Mie modes, enabling strong light-matter interaction, have become a prolific route to achieve high nonlinear efficiency. Here, we demonstrate both numerically and experimentally an effective way of spatial nonlinear phase control by using the Pancharatnam-Berry phase principle with a high third harmonic conversion efficiency of $10^{-4}$ $1/W^2$. We find that the magnetic Mie resonance appears to be the main contributor to the third harmonic response, while the contribution from the quasi-bound states in the continuum is negligible. This is confirmed by a phenomenological model based on coupled anharmonic oscillators. Besides, our metasurface provides experimentally a high diffraction efficiency (80-90%) in both polarization channels. We show a functional application of our approach by experimentally reconstructing an encoded polarization-multiplexed vortex beam array with different topological charges at the third harmonic frequency with high fidelity. Our approach has the potential viability for future on-chip nonlinear signal processing and wavefront control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源