论文标题
探索基础:基于边境和深入学习学习的基于前沿的自主探索的数据集,指标和评估
Explore-Bench: Data Sets, Metrics and Evaluations for Frontier-based and Deep-reinforcement-learning-based Autonomous Exploration
论文作者
论文摘要
在移动机器人技术中,使用单个或多个机器人的未知地形的自主探索和映射是一项重要的任务,因此已得到广泛研究。然而,鉴于缺乏评估勘探方法的统一数据集,指标和平台,我们开发了一个自主机器人勘探基准标题为“ Explore Bench”。基准涉及各种探索场景,并提出了两种定量指标,以评估勘探效率和多机器人合作。探索基础非常有用,因为最近,深入的加固学习(DRL)已被广泛用于机器人勘探任务并取得了令人鼓舞的结果。但是,培训基于DRL的方法需要大量的数据集,此外,当前的基准测试依赖于以缓慢的模拟速度的逼真的模拟器,这不适合培训探索策略。因此,为了支持有效的DRL培训和全面评估,建议的台基础设计具有统一数据流的3级平台和$ 12 \ times $ $加速,其中包括基于网格的模拟器,用于快速评估和有效的凉亭模拟器,一个逼真的凉亭模拟器,以及可易于访问的机器人测试床位,可用于物理环境中的高含量测试。一种基于DRL和三种基于Frontier的探索方法的应用强调了所提出的基准测试的实用性。此外,我们分析了性能差异,并提供了有关探索方法选择和设计的一些见解。我们的基准标准可从https://github.com/efc-robot/explore-bench获得。
Autonomous exploration and mapping of unknown terrains employing single or multiple robots is an essential task in mobile robotics and has therefore been widely investigated. Nevertheless, given the lack of unified data sets, metrics, and platforms to evaluate the exploration approaches, we develop an autonomous robot exploration benchmark entitled Explore-Bench. The benchmark involves various exploration scenarios and presents two types of quantitative metrics to evaluate exploration efficiency and multi-robot cooperation. Explore-Bench is extremely useful as, recently, deep reinforcement learning (DRL) has been widely used for robot exploration tasks and achieved promising results. However, training DRL-based approaches requires large data sets, and additionally, current benchmarks rely on realistic simulators with a slow simulation speed, which is not appropriate for training exploration strategies. Hence, to support efficient DRL training and comprehensive evaluation, the suggested Explore-Bench designs a 3-level platform with a unified data flow and $12 \times$ speed-up that includes a grid-based simulator for fast evaluation and efficient training, a realistic Gazebo simulator, and a remotely accessible robot testbed for high-accuracy tests in physical environments. The practicality of the proposed benchmark is highlighted with the application of one DRL-based and three frontier-based exploration approaches. Furthermore, we analyze the performance differences and provide some insights about the selection and design of exploration methods. Our benchmark is available at https://github.com/efc-robot/Explore-Bench.