论文标题
宇宙早晨第一个星系的形成和形态
Formation and Morphology of the First Galaxies in the Cosmic Morning
论文作者
论文摘要
我们使用Horizon Run 5(HR5)模拟研究了宇宙早晨第一个星系($ 10 \ gtrsim z \ gtrsim 4 $)中第一个星系的形成和形态演变。对于恒星质量$ m _ {\ star,{\ rm min}} = 2 \ times 10^9 \,m _ {\ odot} $上方的星系,我们根据其不对称和明显的质量形态将它们分类为磁盘,球形和不规则类型。我们发现,大约有2/3的星系具有Sérsic指数$ <1.5 $,这反映了圆盘型形态在宇宙早晨的主导地位。其余的均匀分布为偶然和瞬态不规则或球体。这些分数大致独立于红移和恒星质量,最高为$ \ sim10^{10} \,m _ {\ odot} $。几乎所有的第一个星系都带有$ M _ {\ star}> m _ {\ star,{\ rm min}} $在$ z> 4 $的初始峰值处,在物质密度字段的初始峰值处。随着潜在物质密度的波动的增长并形成星系中的大规模宇宙中的大规模结构,并像宇宙根茎一样生长,并且在稀有的过度密度区域中形成星系的关联,而银河系的境界沿着不断发展的细丝延伸到相对较低的密度区域。当大多数根茎全球渗透性大多数渗透性时,星系网的宇宙网络形成。诱导的潮汐扭矩在原生期区域产生的原始角动量与星系的内部运动学相关,并与总星系质量的角动量紧密排列。在初始条件下印记的大规模潮汐场似乎是磁盘形态的主导地位,以及星系在偏移后重新获得磁盘的趋势。
We investigate the formation and morphological evolution of the first galaxies in the cosmic morning ($10 \gtrsim z \gtrsim 4$) using the Horizon Run 5 (HR5) simulation. For galaxies above the stellar mass $M_{\star, {\rm min}} = 2\times 10^9\,M_{\odot}$, we classify them into disk, spheroid, and irregular types according to their asymmetry and stellar mass morphology. We find that about 2/3 of the galaxies have a Sérsic index $< 1.5$, reflecting the dominance of disk-type morphology in the cosmic morning. The rest are evenly distributed as incidental and transient irregulars or spheroids. These fractions are roughly independent of redshift and stellar mass up to $\sim10^{10}\,M_{\odot}$. Almost all the first galaxies with $M_{\star}> M_{\star, {\rm min}}$ at $z>4$ form at initial peaks of the matter density field. Large-scale structures in the universe emerge and grow like cosmic rhizomes as the underlying matter density fluctuations grow and form associations of galaxies in rare overdense regions and the realm of the galactic world is stretched into relatively lower-density regions along evolving filaments. The cosmic web of galaxies forms at lower redshifts when most rhizomes globally percolate. The primordial angular momentum produced by the induced tidal torques on protogalactic regions is correlated with the internal kinematics of galaxies and tightly aligned with the angular momentum of the total galaxy mass. The large-scale tidal field imprinted in the initial conditions seems responsible for the dominance of disk morphology, and for the tendency of galaxies to re-acquire a disk post-distortion.