论文标题

基于量子SVM进行癌症分类任务的有效二进制Harris Hawks优化

An Efficient Binary Harris Hawks Optimization based on Quantum SVM for Cancer Classification Tasks

论文作者

Houssein, Essam H., Abohashima, Zainab, Elhoseny, Mohamed, Mohamed, Waleed M.

论文摘要

基于基因表达的癌症分类增加了早期诊断和恢复,但是具有少量样品的高维基因是一个主要的挑战。这项工作引入了一种新的混合量子内核支持矢量机(QKSVM),并结合了基于二进制的Harris Hawk优化(BHHO)基因选择,用于量子模拟器上的癌症分类。这项研究旨在通过BHHO提供的量子内核估计来改善微阵列癌症的预测性能。功能选择是大维特征的关键步骤,而BHHO用于选择重要功能。 BHHO模仿了哈里斯·霍克斯在自然界的合作行动的行为。主成分分析(PCA)用于减少所选基因以匹配量子数。之后,使用量子计算机用还原基因的训练数据来估计内核,并生成量子核基质。此外,经典计算机用于根据量子内核矩阵绘制支持向量。同样,使用经典设备执行预测阶段。最后,提出的方法应用于结肠和乳房微阵列数据集,并通过BHHO使用所有基因和所选基因进行评估。提出的方法可通过两个数据集提高整体性能。同样,使用不同的量子特征图(内核)和经典核(RBF)评估所提出的方法。

Cancer classification based on gene expression increases early diagnosis and recovery, but high-dimensional genes with a small number of samples are a major challenge. This work introduces a new hybrid quantum kernel support vector machine (QKSVM) combined with a Binary Harris hawk optimization (BHHO) based gene selection for cancer classification on a quantum simulator. This study aims to improve the microarray cancer prediction performance with the quantum kernel estimation based on the informative genes by BHHO. The feature selection is a critical step in large-dimensional features, and BHHO is used to select important features. The BHHO mimics the behavior of the cooperative action of Harris hawks in nature. The principal component analysis (PCA) is applied to reduce the selected genes to match the qubit numbers. After which, the quantum computer is used to estimate the kernel with the training data of the reduced genes and generate the quantum kernel matrix. Moreover, the classical computer is used to draw the support vectors based on the quantum kernel matrix. Also, the prediction stage is performed with the classical device. Finally, the proposed approach is applied to colon and breast microarray datasets and evaluated with all genes and the selected genes by BHHO. The proposed approach is found to enhance the overall performance with two datasets. Also, the proposed approach is evaluated with different quantum feature maps (kernels) and classical kernel (RBF).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源