论文标题
从独立熵中提取共轭的不变性
Extracting invariant of conjugacy from independence entropy
论文作者
论文摘要
在[LMP13]中引入了符号动力学系统的独立熵的概念。这种熵的概念衡量了一个人可以在不违反移位空间定义的约束的情况下将符号自由插入符号的程度。在拓扑结合下,独立熵并不是不变的。我们通过设置SUP H_ {ind}(x)= sup {h_ {ind}(y)| y'x}来定义独立熵的不变版本。这种不变的局限性在上面是拓扑熵的。我们证明,平等sup h_ {ind}(x)= h(x)在z上的所有sofic shift空间中都保留,然后我们举一个示例,表明对通用偏移空间不足。
The concept of independence entropy for symbolic dynamical systems was introduced in [LMP13]. This notion of entropy measures the extent to which one can freely insert symbols in positions without violating the constraints defined by the shift space. Independence entropy is not invariant under topological conjugacy. We define an invariant version of the independence entropy by setting sup h_{ind}(X) = sup{h_{ind}(Y )|Y ' X}. This invariant is bounded above by the topological entropy. We prove that equality sup h_{ind}(X) = h(X) holds for all sofic shift spaces over Z, then we give an example showing that equality does not hold for general shift spaces.