论文标题

稀疏克利福德电路中的可调几何形状

Tunable Geometries in Sparse Clifford Circuits

论文作者

Hashizume, Tomohiro, Kuriyattil, Sridevi, Daley, Andrew J., Bentsen, Gregory

论文摘要

我们研究了与稀疏耦合的随机克利福德电路中不同有效几何形状的出现。通过更改选择两个站点门作为距离的函数的概率分布,我们生成稀疏的相互作用,该稀疏相互作用要么随距离腐烂或生长,作为单个可调参数的函数。调整此参数揭示了三个不同的几何形状,用于扩散系统中的相关性和纠缠的增长。我们观察到短距离相互作用的线性几何形状,在稀疏耦合图上进行长距离相互作用的线性几何形状,以及在线性和Treelike几何形状之间的交叉点处的中间快速拼凑型。在子系统纠缠熵和三方共同信息的计算中揭示了这种几何形状的过渡。我们还研究了通过将单个信息从输入量子乘以到输出量子轴的单个信息来控制这些有效几何形状的新兴灯。这些工具有助于分析在量子多体系统中动态和相关性传播中产生的不同几何形状。

We investigate the emergence of different effective geometries in stochastic Clifford circuits with sparse coupling. By changing the probability distribution for choosing two-site gates as a function of distance, we generate sparse interactions that either decay or grow with distance as a function of a single tunable parameter. Tuning this parameter reveals three distinct regimes of geometry for the spreading of correlations and growth of entanglement in the system. We observe linear geometry for short-range interactions, treelike geometry on a sparse coupling graph for long-range interactions, and an intermediate fast scrambling regime at the crossover point between the linear and treelike geometries. This transition in geometry is revealed in calculations of the subsystem entanglement entropy and tripartite mutual information. We also study emergent lightcones that govern these effective geometries by teleporting a single qubit of information from an input qubit to an output qubit. These tools help to analyze distinct geometries arising in dynamics and correlation spreading in quantum many-body systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源