论文标题

激发和抑制不平衡会通过对称性影响动态复杂性

Excitation and inhibition imbalance affects dynamical complexity through symmetries

论文作者

Ouellet, Mathieu, Kim, Jason Z., Guillaume, Harmange, Shaffer, Sydney M., Bassett, Lee C., Bassett, Dani S.

论文摘要

从放射性矿物骨骼的完美径向对称性到同质学的断裂对称性,大自然规律的逻辑已经使科学家着迷了几个世纪。大自然的某些对称性在形态和物理结构中清晰可见,而另一些则隐藏在系统组件之间的相互作用网络中。就像可见的对称性和不对称性有助于该系统的美丽一样,隐藏的对称性可能会导致系统的功能和谐吗?如果是这样,怎么样?在这里,我们证明了从细胞信号到癌症的生物系统的相互作用网络表现出一种动力反射对称性形式,可扩大其动力学复杂性。扩展是根据有关动态循环长度的确切规则进行的,这是由于激发和抑制之间的特殊失衡而实现的。为了探测这种反射对称性演变的条件,我们使用多目标遗传算法来产生具有较长动力学周期的网络。我们发现,打破反射对称性的局部结构基序在进化过程中被删除,提供了对称性在动态复杂性中的因果作用的证据。最后,我们在药物耐药性癌细胞中基因表达的实际连续值SCRNA-SEQ数据中确定对称性。从广义上讲,我们的工作揭示了生物学中的一类隐藏对称性,这些对称性存在于系统组件之间的相互作用网络中,并且强调了它们的功能重要性。在数学上简单且计算便宜,我们的方法适用于现代实验中通常获得的生物学数据类型。

From the perfect radial symmetries of radiolarian mineral skeletons to the broken symmetry of homochirality, the logic of Nature's regularities has fascinated scientists for centuries. Some of Nature's symmetries are clearly visible in morphology and physical structure, whereas others are hidden in the network of interactions among system components. Just as visible symmetries and asymmetries contribute to the system's beauty, might hidden symmetries contribute to the system's functional harmony? And if so, how? Here we demonstrate that the interaction networks of biological systems from cell signaling to cancer display a form of dynamical reflection symmetry that serves to expand their dynamical complexity. The expansion proceeds according to precise rules regarding the lengths of dynamical cycles, made possible by a peculiar imbalance between excitation and inhibition. To probe the conditions under which this reflection symmetry evolves, we use a multi-objective genetic algorithm to produce networks with long dynamical cycles. We find that local structural motifs that break the reflection symmetry are deleted in the evolutionary process, providing evidence for symmetry's causal role in dynamical complexity. Finally, we identify symmetries in real continuous-valued scRNA-seq data of gene expression in drug-resistant cancer cells. Broadly, our work reveals a class of hidden symmetries in biology, present in the network of interactions among system components, and it underscores their functional importance. Mathematically simple and computational inexpensive, our approach is applicable to the types of biological data commonly acquired in modern experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源