论文标题

三角kagome晶格及其庞大的对应关系上的脆弱拓扑阶段

Fragile topological phase on the triangular kagome lattice and its bulk-boundary correspondence

论文作者

Chen, Yun-Feng, Yao, Dao-Xin

论文摘要

我们使用紧密结合(TB)模型(TB)模型和拓扑量子化学理论(TQC)预测和检查各种拓扑状态。首先,在TQC的基础上,我们诊断具有脆弱拓扑结构的带结构,并计算Wilson-Loop Spectra和Hofstadter Butterfly Spectra,以确认它们的非平凡性质。其次,我们检查了庞大的边界对应关系,发现阻塞的原子限制(OAL)绝缘子宿主宿主是分数角状态而不会伴随着脆弱的拓扑带结构,这意味着OAL和角状态的存在不是足够的条件来脆弱。最后但并非最不重要的一点是,我们预测了从二阶拓扑阶段到一阶拓扑阶段的拓扑相变,该阶段可以在磁场的作用下在TKL中实现。

We predict and examine various topological states on a two-dimensional (2D) triangular kagome lattice (TKL) using the tight-binding (TB) models and theory of topological quantum chemistry (TQC). Firstly, on the basis of TQC, we diagnose band structures with fragile topology and calculate Wilson-loop spectra and Hofstadter butterfly spectra to confirm their non-trivial nature. Secondly, we examine the bulk-boundary correspondence and find that an obstructed-atomic-limit (OAL) insulator hosts fractional corner states without being accompanied by fragile topological band structures, which implies that the presence of OALs and corner states is not a sufficient condition to fragile topology. Last but not least, we predict a topological phase transition from a second-order topological phase to a first-order topological phase that can be realized in the TKL under the action of a magnetic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源