论文标题
巨人之间悬挂的绳子连接
String junctions suspended between giants
论文作者
论文摘要
我们构建了$(p,q)$ string连接解决方案,悬挂在$ ads_5 \ times s^5 $中的球体和广告巨型重力之间。我们的结果很容易扩展到LLM类型的更通用的半BP几何形状。这些具有巨大吸引力的世界伏洛的方向的角度动量。我们认为,这些代数的中央延伸与$ {\ cal n} = 4 $旋转链中出现的超对称代数的中心扩展相似。我们还认为,相对于此中心扩展,它们是BP。我们表明,除了一些运动细节外,该连接最终解决了$ {\ cal n} = 4 $ sym的库仑分支中出现的相同最小化问题。它们的质量和形状与交界处所携带的角动量$ Q $无关。
We construct $(p,q)$ string junction solutions suspended between both sphere and AdS giant gravitons in $AdS_5\times S^5$. Our results extend easily to more general half BPS geometries of LLM type. These carry angular momentum in the directions of the worldvolume of the giant gravitons. We argue that these are charged under a central extension of the supersymmetry algebra similar to the one that has appeared in the works of Beisert for the ${\cal N}=4 $ spin chain. We also argue that they are BPS with respect to this central extension. We show that apart from some kinematical details, the junctions end up solving the same minimization problem that appears in the Coulomb branch of ${\cal N}=4 $ SYM. Their mass and shape is independent of the angular momentum $Q$ that the junction carries.