论文标题
随机种子场的超分辨率剂量
Super-resolution GANs of randomly-seeded fields
论文作者
论文摘要
从稀疏测量中重建现场数量是在广泛应用中产生的问题。当稀疏测量和现场数量之间的映射以无监督的方式执行时,此任务尤其具有挑战性。为移动传感器和/或随机开关状态添加了进一步的复杂性。在这种情况下,最直接的解决方案是将散射数据插入常规网格上。但是,通过这种方法实现的空间分辨率最终受到稀疏测量之间的平均间距的限制。在这项工作中,我们提出了一个超分辨率生成对抗网络(GAN)框架,以从随机稀疏传感器中估算现场数量,而无需任何全场高分辨率训练。该算法利用随机抽样来提供{高分辨率}基础分布的不完整视图。特此称为随机种子的超分辨率gan(raseedgan)。在流体流量模拟,海面温度分布测量值以及零压力梯度湍流边界层的粒子图像速度学数据的合成数据库上测试了所提出的技术。即使在高稀疏性或噪声水平的情况下,结果也表现出卓越的性能。据我们所知,这是从随机种子域中进行全场高分辨率估算的第一个GAN算法,而无需全场高分辨率表示。
Reconstruction of field quantities from sparse measurements is a problem arising in a broad spectrum of applications. This task is particularly challenging when the mapping between sparse measurements and field quantities is performed in an unsupervised manner. Further complexity is added for moving sensors and/or random on-off status. Under such conditions, the most straightforward solution is to interpolate the scattered data onto a regular grid. However, the spatial resolution achieved with this approach is ultimately limited by the mean spacing between the sparse measurements. In this work, we propose a super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors without needing any full-field high-resolution training. The algorithm exploits random sampling to provide incomplete views of the {high-resolution} underlying distributions. It is hereby referred to as RAndomly-SEEDed super-resolution GAN (RaSeedGAN). The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data of a zero-pressure-gradient turbulent boundary layer. The results show excellent performance even in cases with high sparsity or with levels of noise. To our knowledge, this is the first GAN algorithm for full-field high-resolution estimation from randomly-seeded fields with no need of full-field high-resolution representations.