论文标题

群集数据的分位数回归中偏置调整的估计器

A bias-adjusted estimator in quantile regression for clustered data

论文作者

Battagliola, Maria Laura, Sørensen, Helle, Tolver, Anders, Staicu, Ana-Maria

论文摘要

手稿讨论了如何将群集回归模型的随机效应纳入群集数据,重点是许多群集以外的设置。该论文有三个贡献:(i)记录现有方法可能导致固定效应参数的严重偏置估计值; (ii)提出了一种新的两步估计方法,其中首先通过伪可能方法(LQMM方法)计算随机效应的预测,然后用作标准分位数回归中的偏移; (iii)提出一种新型的自举采样程序,以减少两步估计器的偏差和计算置信区间。提出的估计和相关的推断是通过严格的模拟研究来评估数值的,并应用于AIDS临床试验组(ACTG)研究。

The manuscript discusses how to incorporate random effects for quantile regression models for clustered data with focus on settings with many but small clusters. The paper has three contributions: (i) documenting that existing methods may lead to severely biased estimators for fixed effects parameters; (ii) proposing a new two-step estimation methodology where predictions of the random effects are first computed {by a pseudo likelihood approach (the LQMM method)} and then used as offsets in standard quantile regression; (iii) proposing a novel bootstrap sampling procedure in order to reduce bias of the two-step estimator and compute confidence intervals. The proposed estimation and associated inference is assessed numerically through rigorous simulation studies and applied to an AIDS Clinical Trial Group (ACTG) study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源