论文标题

网络在线学习,以控制基于高斯流程的安全至关重要资源受限系统

Networked Online Learning for Control of Safety-Critical Resource-Constrained Systems based on Gaussian Processes

论文作者

Lederer, Armin, Zhang, Mingmin, Tesfazgi, Samuel, Hirche, Sandra

论文摘要

在未知环境中运行的安全至关重要的技术系统需要能够快速调整其行为,这可以通过从操作过程中生成的数据流在线推断模型来在控制中实现。基于高斯流程的学习特别适合于安全至关重要的应用,因为它可以确保有限的预测错误。尽管存在用于在线推断的计算有效近似,但这些方法缺乏预测错误的保证,并且具有高内存要求,因此不适用于具有严格记忆约束的安全至关重要系统。在这项工作中,我们根据高斯流程回归提出了一种新颖的网络在线学习方法,该方法通过在云中采用远程数据管理来解决本地资源有限的问题。我们的方法正式保证具有高概率的有限跟踪误差,该错误被利用以确定最相关的数据以实现一定的控制性能。我们进一步提出了在本地系统与云之间的有效数据传输方案,并考虑到传输通道的带宽限制和时间延迟。在模拟中成功证明了该方法的有效性。

Safety-critical technical systems operating in unknown environments require the ability to quickly adapt their behavior, which can be achieved in control by inferring a model online from the data stream generated during operation. Gaussian process-based learning is particularly well suited for safety-critical applications as it ensures bounded prediction errors. While there exist computationally efficient approximations for online inference, these approaches lack guarantees for the prediction error and have high memory requirements, and are therefore not applicable to safety-critical systems with tight memory constraints. In this work, we propose a novel networked online learning approach based on Gaussian process regression, which addresses the issue of limited local resources by employing remote data management in the cloud. Our approach formally guarantees a bounded tracking error with high probability, which is exploited to identify the most relevant data to achieve a certain control performance. We further propose an effective data transmission scheme between the local system and the cloud taking bandwidth limitations and time delay of the transmission channel into account. The effectiveness of the proposed method is successfully demonstrated in a simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源