论文标题
听解释:使用NMF的音频网络的事后解释性
Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF
论文作者
论文摘要
本文解决了音频处理网络的事后解释性。我们的目标是用高级音频对象来解释网络对最终用户也可以倾听的决策。为此,我们提出了一种新颖的解释器设计,该设计结合了非负矩阵分解(NMF)。特别是,训练了一个经过精心正规的解释器模块,以将目标网络的隐藏层表示作为输入,并产生前学习NMF组件的时间激活作为中间输出。我们的方法使我们能够生成基于直观的音频解释,这些解释明确增强了与网络决策最相关的输入信号的一部分。我们证明了我们的方法对流行基准的适用性,包括现实世界中的多标签分类任务。
This paper tackles post-hoc interpretability for audio processing networks. Our goal is to interpret decisions of a network in terms of high-level audio objects that are also listenable for the end-user. To this end, we propose a novel interpreter design that incorporates non-negative matrix factorization (NMF). In particular, a carefully regularized interpreter module is trained to take hidden layer representations of the targeted network as input and produce time activations of pre-learnt NMF components as intermediate outputs. Our methodology allows us to generate intuitive audio-based interpretations that explicitly enhance parts of the input signal most relevant for a network's decision. We demonstrate our method's applicability on popular benchmarks, including a real-world multi-label classification task.