论文标题

整体动机滑轮和几何表示理论

Integral Motivic Sheaves And Geometric Representation Theory

论文作者

Eberhardt, Jens Niklas, Scholbach, Jakob

论文摘要

考虑到代表性理论应用,我们构建了与整体系数减少动机的形式主义。这些是动机滑轮,从中删除了基本方案的更高动力的共同体。我们表明,减少的分层动机满足了包括重量和T结构在内的有利特性。我们还证明,降低了细胞(IND-)方案的动机,统一了代表理论中混合束带的各种方法,例如Soergel-Wendt的半填充霍奇动机,Achar-Rich-Riche的Parity Sheaves的复合体,以及Ho-Li的最新类别以及级别的$ \ Ell $ \ Ell $ \ ell \ ell \ Ell \ Ell \ Ell \ Ell \ Ell-Aadic Sheaves。

With representation-theoretic applications in mind, we construct a formalism of reduced motives with integral coefficients. These are motivic sheaves from which the higher motivic cohomology of the base scheme has been removed. We show that reduced stratified Tate motives satisfy favorable properties including weight and t-structures. We also prove that reduced motives on cellular (ind-)schemes unify various approaches to mixed sheaves in representation theory, such as Soergel-Wendt's semisimplified Hodge motives, Achar-Riche's complexes of parity sheaves, as well as Ho-Li's recent category of graded $\ell$-adic sheaves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源