论文标题
标准量化矩阵代数$ m_q(n)$是可解决的多项式代数
The Standard Quantized Matrix Algebra $M_q(n)$ is A Solvable Polynomial Algebra
论文作者
论文摘要
令$ m_q(n)$为Faddeev,Reshetikhin和Takhtajan引入的标准量化矩阵代数。通过在其pbw $ k $ -basis $ {\ cal b} $上构建适当的单订单$ \ prec $,显示出$ m_q(n)$是可解决的多项式代数。因此,可以建立建设性的计算方式建立和实现$ m_q(n)$及其模块的进一步结构属性。
Let $M_q(n)$ be the standard quantized matrix algebra, introduced by Faddeev, Reshetikhin, and Takhtajan. It is shown, by constructing an appropriate monomial ordering $\prec$ on its PBW $K$-basis ${\cal B}$ , that $M_q(n)$ is a solvable polynomial algebra. Consequently, further structural properties of $M_q(n)$ and their modules may be established and realized in a constructive-computational way.