论文标题

最佳(受控的)量子状态制备和通过量子电路改善统一的合成

Optimal (controlled) quantum state preparation and improved unitary synthesis by quantum circuits with any number of ancillary qubits

论文作者

Yuan, Pei, Zhang, Shengyu

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

As a cornerstone for many quantum linear algebraic and quantum machine learning algorithms, controlled quantum state preparation (CQSP) aims to provide the transformation of $|i\rangle |0^n\rangle \to |i\rangle |ψ_i\rangle $ for all $i\in \{0,1\}^k$ for the given $n$-qubit states $|ψ_i\rangle$. In this paper, we construct a quantum circuit for implementing CQSP, with depth $O\left(n+k+\frac{2^{n+k}}{n+k+m}\right)$ and size $O\left(2^{n+k}\right)$ for any given number $m$ of ancillary qubits. These bounds, which can also be viewed as a time-space tradeoff for the transformation, are \optimal for any integer parameters $m,k\ge 0$ and $n\ge 1$. When $k=0$, the problem becomes the canonical quantum state preparation (QSP) problem with ancillary qubits, which asks for efficient implementations of the transformation $|0^n\rangle|0^m\rangle \to |ψ\rangle |0^m\rangle$. This problem has many applications with many investigations, yet its circuit complexity remains open. Our construction completely solves this problem, pinning down its depth complexity to $Θ(n+2^{n}/(n+m))$ and its size complexity to $Θ(2^{n})$ for any $m$. Another fundamental problem, unitary synthesis, asks to implement a general $n$-qubit unitary by a quantum circuit. Previous work shows a lower bound of $Ω(n+4^n/(n+m))$ and an upper bound of $O(n2^n)$ for $m=Ω(2^n/n)$ ancillary qubits. In this paper, we quadratically shrink this gap by presenting a quantum circuit of the depth of $O\left(n2^{n/2}+\frac{n^{1/2}2^{3n/2}}{m^{1/2}}\right)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源