论文标题
部分可观测时空混沌系统的无模型预测
Spin-Phonon-Photon Strong Coupling in a Piezomechanical Nanocavity
论文作者
论文摘要
我们引入了一个混合三方量子系统,用于在半导体自旋,机械声子和微波光子之间进行强耦合。该系统由带有集成钻石应变浓度的压电谐振器组成,可实现微波声音和自旋声音耦合率$ \ sim $ MHz或更大的含量,可以同时进行超高的合作($ \ sim 10^3 $ and $ \ sim 10^2^2 $)。根据有限元建模和主方程模拟,我们根据单独显示的设备参数估算超过0.97的光子到自旋量子态传输忠诚度。我们预计该设备将启用混合量子体系结构,以利用超导电路和固态旋转的优势进行信息处理,内存和网络。
We introduce a hybrid tripartite quantum system for strong coupling between a semiconductor spin, a mechanical phonon, and a microwave photon. Consisting of a piezoelectric resonator with an integrated diamond strain concentrator, this system achieves microwave-acoustic and spin-acoustic coupling rates $\sim$MHz or greater, allowing for simultaneous ultra-high cooperativities ($\sim 10^3$ and $\sim 10^2$, respectively). From finite-element modeling and master equation simulations, we estimate photon-to-spin quantum state transfer fidelities exceeding 0.97 based on separately demonstrated device parameters. We anticipate that this device will enable hybrid quantum architectures that leverage the advantages of both superconducting circuits and solid-state spins for information processing, memory, and networking.