论文标题

使用图形卷积网络对计算机辅助工程(CAE)零件进行分类

Classification of Computer Aided Engineering (CAE) Parts Using Graph Convolutional Networks

论文作者

Warey, Alok, Chakravarty, Rajan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

CAE engineers work with hundreds of parts spread across multiple body models. A Graph Convolutional Network (GCN) was used to develop a CAE parts classifier. As many as 866 distinct parts from a representative body model were used as training data. The parts were represented as a three-dimensional (3-D) Finite Element Analysis (FEA) mesh with values of each node in the x, y, z coordinate system. The GCN based classifier was compared to fully connected neural network and PointNet based models. Performance of the trained models was evaluated with a test set that included parts from the training data, but with additional holes, rotation, translation, mesh refinement/coarsening, variation of mesh schema, mirroring along x and y axes, variation of topographical features, and change in mesh node ordering. The trained GCN model was able to achieve 88.5% classification accuracy on the test set i.e., it was able to find the correct matching part from the dataset of 866 parts despite significant variation from the baseline part. A CAE parts classifier demonstrated in this study could be very useful for engineers to filter through CAE parts spread across several body models to find parts that meet their requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源