论文标题

与拉普拉斯操作员在同质树上的热度半群的热量和下属的偶数收敛,并有两个加权$ l^p $最大不平等

Pointwise convergence of the heat and subordinates of the heat semigroups associated with the Laplace operator on homogeneous trees and two weighted $L^p$ maximal inequalities

论文作者

Alvarez-Romero, I., Barrios, B., Betancor, J. J.

论文摘要

在本文中,我们考虑了由组合laplacian定义的热量半群$ \ {w_t \} _ {t> 0} $,在同质树上的$ \ {w_t \} _ {w_t \} _ {w_t \} _ {w_t \} _ {w_t \} _ {w_t \} _我们表征了$ x $上的权重$ u $,以上述家族的初始数据为l^{p}(p}(x,μ,u)$的初始数据,其中$ 1 \ le p <\ infty $,其中$μ$代表$ x $的计数。我们证明,$ x $中的这种收敛属性相当于以下事实:$ t \ in(0,r)$上的最大运算符,对于某些$ r> 0 $,由semogroup定义为$ l^{p}(p}(x,μ,x,μ,u)$ in $ l^{p}(x,x,x,μ,v)$ x $ x $ x上$

In this paper we consider the heat semigroup $\{W_t\}_{t>0}$ defined by the combinatorial Laplacian and two subordinated families of $\{W_t\}_{t>0}$ on homogeneous trees $X$. We characterize the weights $u$ on $X$ for which the pointwise convergence to initial data of the above families holds for every $f\in L^{p}(X,μ,u)$ with $1\le p<\infty$, where $μ$ represents the counting measure in $X$ . We prove that this convergence property in $X$ is equivalent to the fact that the maximal operator on $t\in (0,R)$, for some $R>0$, defined by the semigroup is bounded from $L^{p}(X,μ,u)$ into $L^{p}(X,μ,v)$ for some weight $v$ on $X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源