论文标题

基于神经网络的空间和语言的继任代表

Neural Network based Successor Representations of Space and Language

论文作者

Stoewer, Paul, Schlieker, Christian, Schilling, Achim, Metzner, Claus, Maier, Andreas, Krauss, Patrick

论文摘要

思想如何组织思想?人们认为海马 - 进入综合体可以支持领域的代表和处理任意状态,特征和概念空间的结构知识的处理。特别是,它可以在这些地图上形成认知图和导航,从而广泛地有助于认知。已经提出,多尺度后继表示的概念提供了对按位置和网格单元进行的基础计算的解释。在这里,我们提出了一种基于神经网络的方法来学习此类表示形式及其在不同方案中的应用:基于监督学习的空间探索任务,基于强化学习的空间导航任务以及一个非空间任务,其中必须通过观察样本句子来推断语言结构。在所有情况下,神经网络都通过构建后继代表来正确学习和近似基础结构。此外,所产生的神经发射模式与实验观察到的位置和网格细胞发射模式非常相似。我们得出的结论是,结构化知识的认知图和基于神经网络的后继表示提供了一种有希望的方法,可以克服一些深入学习的简短启动。

How does the mind organize thoughts? The hippocampal-entorhinal complex is thought to support domain-general representation and processing of structural knowledge of arbitrary state, feature and concept spaces. In particular, it enables the formation of cognitive maps, and navigation on these maps, thereby broadly contributing to cognition. It has been proposed that the concept of multi-scale successor representations provides an explanation of the underlying computations performed by place and grid cells. Here, we present a neural network based approach to learn such representations, and its application to different scenarios: a spatial exploration task based on supervised learning, a spatial navigation task based on reinforcement learning, and a non-spatial task where linguistic constructions have to be inferred by observing sample sentences. In all scenarios, the neural network correctly learns and approximates the underlying structure by building successor representations. Furthermore, the resulting neural firing patterns are strikingly similar to experimentally observed place and grid cell firing patterns. We conclude that cognitive maps and neural network-based successor representations of structured knowledge provide a promising way to overcome some of the short comings of deep learning towards artificial general intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源