论文标题

在$ d \ times d $系统中表征广义的轴对称量子状态

Characterizing generalized axisymmetric quantum states in $d\times d$ systems

论文作者

Benkner, Marcel Seelbach, Siewert, Jens, Gühne, Otfried, Sentís, Gael

论文摘要

我们在任意维度中介绍了高度对称的两分量子状态的家族。它由所有在本地相旋转和基础局部循环排列下不变的州组成。我们解决了这些国家子空间的可分离性问题,并表明家庭的相当一部分被绑定在一起。我们还以$ d = 3 $计算了家庭的一些施密特数字,从而表征了纠缠的维度。我们的结果使我们能够估计任意国家的纠缠特性,因为可以通过地方行动将一般国家与所考虑的家庭对称。

We introduce a family of highly symmetric bipartite quantum states in arbitrary dimensions. It consists of all states that are invariant under local phase rotations and local cyclic permutations of the basis. We solve the separability problem for a subspace of these states and show that a sizable part of the family is bound entangled. We also calculate some of the Schmidt numbers for the family in $d = 3$, thereby characterizing the dimensionality of entanglement. Our results allow us to estimate entanglement properties of arbitrary states, as general states can be symmetrized to the considered family by local operations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源