论文标题

紧凑的Riemannian歧管上几乎积极的核

Almost positive kernels on compact Riemannian manifolds

论文作者

Gariboldi, Bianca, Gigante, Giacomo

论文摘要

我们展示了如何构建一个内核\ [k_x(x,y)= \ sum_ {m = 0}^xh(λ_m/{λ_m/{λ_x})φ_m(x)\ edmepline {φ_m(y)} \]在紧凑的riemannian歧管上的protibold $ k _上,这是$ k $,大约是$ k _ negligrig and。 x $。这里$ 0 =λ_0^2 \leλ_1^2 \ le \ ldots $是$ m $上的laplace-beltrami运算符的特征值,并列出了重复的$ m $,$φ_0,\,\,φ_1,φ_1,\ ldots $ of eigenfunctions of eigenfunctions of or o y orthorm $ l^2(m)功能$ h $平滑至一定的最低度,即使在$ [-1,1] $中,$ h(0)= 1 $和$ k_x(x,y)$ comply compart compact compact of the Identity近似。

We show how to build a kernel \[ K_X(x,y)=\sum_{m=0}^Xh(λ_m/{λ_X})φ_m(x)\overline{φ_m(y)} \] on a compact Riemannian manifold $M$, which is positive up to a negligible error and such that $K_X(x,x)\approx X$. Here $0=λ_0^2\leλ_1^2\le\ldots$ are the eigenvalues of the Laplace-Beltrami operator on $M$, listed with repetitions, and $φ_0,\,φ_1,\ldots$ an associated system of eigenfunctions, forming an orthonormal basis of $L^2(M)$. The function $h$ is smooth up to a certain minimal degree, even, compactly supported in $[-1,1]$ with $h(0)=1$, and $K_X(x,y)$ turns out to be an approximation to the identity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源