论文标题
在带有广义逻辑来源的Cahn-Hilliard-keller-segel模型上,描述了肿瘤的生长
On a Cahn-Hilliard-Keller-Segel model with generalized logistic source describing tumor growth
论文作者
论文摘要
我们提出了一种新型的扩散界面模型,该模型描述了化学物质(例如,营养或药物)的作用下肿瘤质量的演变。通过利用变量$φ$,代表肿瘤细胞局部比例的顺序参数和$σ$来描述该过程。假定订单参数$φ$满足具有质量源的Cahn-Hilliard方程的合适形式,并满足Flory-Huggins类型的质量源和对数电位(或IT概括)。化学浓度$σ$满足反应扩散方程,其中交叉扩散项的表达与著名的凯勒 - 塞格模型相同。在这方面,我们提出的模型代表了Cahn-Hilliard方程与Keller-Segel模型的子系统之间的新耦合。我们认为,与其他模型相比,这种选择在捕获肿瘤生长动力学可能发生的趋化作用方面更有效(化学诱导的肿瘤演化和肿瘤细胞对营养/药物的消耗)。请注意,为了防止$σ$的有限时间爆炸,我们假定具有物流类型的化学源术语。我们的主要数学结果致力于在涵盖两维情况的相当通用的环境中证明存在弱解决方案。在对系数和数据的更限制的假设下,在某些情况下,在空间维度上,我们证明了各种规律性的结果。最后,在适当的平滑解决方案中,我们在许多重要情况下显示出对初始数据的独特性和持续依赖性。
We propose a new type of diffuse interface model describing the evolution of a tumor mass under the effects of a chemical substance (e.g., a nutrient or a drug). The process is described by utilizing the variables $φ$, an order parameter representing the local proportion of tumor cells, and $σ$, representing the concentration of the chemical. The order parameter $φ$ is assumed to satisfy a suitable form of the Cahn-Hilliard equation with mass source and logarithmic potential of Flory-Huggins type (or generalizations of it). The chemical concentration $σ$ satisfies a reaction-diffusion equation where the cross-diffusion term has the same expression as in the celebrated Keller-Segel model. In this respect, the model we propose represents a new coupling between the Cahn-Hilliard equation and a subsystem of the Keller-Segel model. We believe that, compared to other models, this choice is more effective in capturing the chemotactic effects that may occur in tumor growth dynamics (chemically induced tumor evolution and consumption of nutrient/drug by tumor cells). Note that, in order to prevent finite time blowup of $σ$, we assume a chemical source term of logistic type. Our main mathematical result is devoted to proving existence of weak solutions in a rather general setting that covers both the two- and three- dimensional cases. Under more restrictive assumptions on coefficients and data, and in some cases on the spatial dimension, we prove various regularity results. Finally, in a proper class of smooth solutions we show uniqueness and continuous dependence on the initial data in a number of significant cases.