论文标题
使用图神经网络学习复杂系统的学习动力和结构
Learning Dynamics and Structure of Complex Systems Using Graph Neural Networks
论文作者
论文摘要
许多复杂的系统由相互作用的零件组成,而基本定律通常简单而普遍。尽管图神经网络为建模这种系统提供了有用的关系电感偏差,但对同一类型的新系统实例的概括较少。在这项工作中,我们训练了图形神经网络,以适应示例非线性动力学系统的时间序列,即信仰传播算法。我们发现了对学习的表示和模型组件的简单解释,它们与概率推理算法的核心特性一致。我们成功地识别了信念传播中的统计相互作用与相应训练的网络的参数之间的“图形转换器”,并表明它可以实现两种类型的新型概括:仅基于时间序列观测值的新系统实例的基础结构,或直接从该结构中构造新的网络。我们的结果证明了一条了解复杂系统的动态和结构的途径,以及如何将这种理解用于概括。
Many complex systems are composed of interacting parts, and the underlying laws are usually simple and universal. While graph neural networks provide a useful relational inductive bias for modeling such systems, generalization to new system instances of the same type is less studied. In this work we trained graph neural networks to fit time series from an example nonlinear dynamical system, the belief propagation algorithm. We found simple interpretations of the learned representation and model components, and they are consistent with core properties of the probabilistic inference algorithm. We successfully identified a 'graph translator' between the statistical interactions in belief propagation and parameters of the corresponding trained network, and showed that it enables two types of novel generalization: to recover the underlying structure of a new system instance based solely on time series observations, or to construct a new network from this structure directly. Our results demonstrated a path towards understanding both dynamics and structure of a complex system and how such understanding can be used for generalization.