论文标题

有效地设计合同的菜单:随机的力量

Designing Menus of Contracts Efficiently: The Power of Randomization

论文作者

Castiglioni, Matteo, Marchesi, Alberto, Gatti, Nicola

论文摘要

我们研究了隐藏行动的主要代理问题,其中本金承诺依赖结果的付款计划(称为合同),以激励代理商采取昂​​贵,不可观察的行动,从而导致有利的结果。特别是,我们专注于代理具有私人信息的贝叶斯环境。这是由代理类型统称的,该类型是原理的未知,但根据有限支持的,通常已知的概率分布随机绘制。在贝叶斯主要代理问题中,通过承诺指定每种代理类型合同的合同菜单,而不是致力于单一合同,则本金可以更好。这引起了一个两阶段的过程,类似于经典机制设计中研究的交互作用:在委托人致力于菜单之后,代理首先向本金报告一种类型,然后,后者在菜单中的合同将与报告类型相对应。因此,校长的计算问题归结为设计合同菜单,该合同激励代理报告其真实类型并最大程度地提高预期实用程序。以前的工作表明,计算合同最佳菜单是APX-HARD。至关重要的是,以前的作品着重于确定性合同的菜单。令人惊讶的是,我们表明,如果人们考虑了定义为付款向量的概率分布的随机合同的菜单,那么可以在多项式时间内计算“几乎最佳的”菜单。实际上,计算随机合同的主体最佳菜单的问题可能不承认最大值,而只能是至高无上的。然而,我们展示了如何设计多项式时间算法,该算法保证了本校长任意接近上述的预期效用。除了这一主要结果外,我们还缩小了确定性合同菜单分析的几个空白。

We study hidden-action principal-agent problems in which a principal commits to an outcome-dependent payment scheme (called contract) so as to incentivize the agent to take a costly, unobservable action leading to favorable outcomes. In particular, we focus on Bayesian settings where the agent has private information. This is collectively encoded by the agent's type, which is unknown to the principal, but randomly drawn according to a finitely-supported, commonly-known probability distribution. In Bayesian principal-agent problems, the principal may be better off by committing to a menu of contracts specifying a contract for each agent's type, rather than committing to a single contract. This induces a two-stage process that resembles interactions studied in classical mechanism design: after the principal has committed to a menu, the agent first reports a type to the principal, and, then, the latter puts in place the contract in the menu that corresponds to the reported type. Thus, the principal's computational problem boils down to designing a menu of contracts that incentivizes the agent to report their true type and maximizes expected utility. Previous works showed that computing an optimal menu of contracts is APX-hard. Crucially, previous works focus on menus of deterministic contracts. Surprisingly, we show that, if one considers menus of randomized contracts defined as probability distributions over payment vectors, then an "almost-optimal" menu can be computed in polynomial time. Indeed, the problem of computing a principal-optimal menu of randomized contracts may not admit a maximum, but only a supremum. Nevertheless, we show how to design a polynomial-time algorithm that guarantees the principal with an expected utility arbitrarily close to the supremum. Besides this main result, we also close several gaps in the analysis of menus of deterministic contracts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源