论文标题
特定图意品种的有界高度的积分点
Integral points of bounded height on a certain toric variety
论文作者
论文摘要
我们确定了某个复曲面上有界高度的积分点数的渐近公式,这与Chambert-Loir和Tschinkel的一部分预印本不兼容。我们提供了对我们获得的渐近公式的替代解释。为此,我们构建了Peyre常数$α$的类似物,并描述了其与某些品种中不可或缺点的Zariski密度的新障碍物的关系。
We determine an asymptotic formula for the number of integral points of bounded height on a certain toric variety, which is incompatible with part of a preprint by Chambert-Loir and Tschinkel. We provide an alternative interpretation of the asymptotic formula we get. To do so, we construct an analogue of Peyre's constant $α$ and describe its relation to a new obstruction to the Zariski density of integral points in certain regions of varieties.