论文标题
流畅游戏中的信息设计
Information Design in Smooth Games
论文作者
论文摘要
我们在游戏中研究信息设计,玩家可以从连续的动作中进行选择,并且具有不断的可分辨率。我们表明,当它引起的平衡也可以在主要代理合同问题中实现时,信息结构是最佳的。在此结果的基础上,我们表征了对称线性季度游戏中的最佳信息结构。对于共同的值,在所有先验中,有针对性的披露都是最佳的。有了相互依存的和正态分布的值,线性披露是独特的最佳选择。我们用风险投资,贝叶斯两极分化和价格竞争的应用来说明我们的发现。
We study information design in games where players choose from a continuum of actions and have continuously differentiable payoffs. We show that an information structure is optimal when the equilibrium it induces can also be implemented in a principal-agent contracting problem. Building on this result, we characterize optimal information structures in symmetric linear-quadratic games. With common values, targeted disclosure is robustly optimal across all priors. With interdependent and normally distributed values, linear disclosure is uniquely optimal. We illustrate our findings with applications in venture capital, Bayesian polarization, and price competition.