论文标题
强大的静态和动态最大流动
Robust static and dynamic maximum flows
论文作者
论文摘要
我们研究了稳健的最大流量问题和稳健的最大流动流期,其中给定数量的ARCS $γ$可能失败或可能会延迟。这些问题已经引入了两个突出的模型:在任何情况下,一个分配流向符合弱流量保护的弧线,或者将流量分配到弧故障或延迟影响整个路径的路径。我们通过介绍新颖的通用模型来提供一个统一的框架,其中我们将流程分配给子路径。这些模型包含已知模型作为特殊情况,并统一了其优势,以便获得较不保守的强大解决方案。我们就通用模型的复杂性进行了详尽的分析。特别是,我们表明一般模型本质上是NP-HARD,而例如在$γ= 1 $的静态情况下,可以在多项式时间内计算最佳解决方案。此外,我们回答了关于$γ= 1 $的动态路径模型复杂性的开放问题。我们还比较了不同模型的解决方案质量。从详细的角度来看,我们表明,一般模型比已知模型具有更好的鲁棒最佳值,并且在这些差距上证明了界限。
We study the robust maximum flow problem and the robust maximum flow over time problem where a given number of arcs $Γ$ may fail or may be delayed. Two prominent models have been introduced for these problems: either one assigns flow to arcs fulfilling weak flow conservation in any scenario, or one assigns flow to paths where an arc failure or delay affects a whole path. We provide a unifying framework by presenting novel general models, in which we assign flow to subpaths. These models contain the known models as special cases and unify their advantages in order to obtain less conservative robust solutions. We give a thorough analysis with respect to complexity of the general models. In particular, we show that the general models are essentially NP-hard, whereas, e.g. in the static case with $Γ= 1$ an optimal solution can be computed in polynomial time. Further, we answer the open question about the complexity of the dynamic path model for $Γ= 1$. We also compare the solution quality of the different models. In detail, we show that the general models have better robust optimal values than the known models and we prove bounds on these gaps.