论文标题
标准可衡量空间的Giry代数
Giry algebras for standard measurable spaces
论文作者
论文摘要
“超级凸空间”的概念通过用可计数的仿射和替换有限的仿射总和来概括凸空间的概念。使用此概念,可以在标准可测量的空间上分析Giry Monad的一种非常优雅的方法,并确定该单元的$ \ Mathcal {G} $ - 代数。我们使用ISBELL对偶性并限制Adjuntion $ \ Mathbf {spec} \ Dashv \ Mathcal {O} $作为超级凸空间的正确子类别和分离的标准可测量空间。
The notion of "super convex spaces" generalizes the idea of convex spaces by replacing finite affine sums with countable affine sums. Using this notion permits a very elegant approach for analysis of the Giry monad on standard measurable spaces and identifying the $\mathcal{G}$-algebras for that monad. We use Isbell duality and restrict the adjunction $\mathbf{Spec} \dashv \mathcal{O}$ to a proper subcategory of super convex spaces and separated standard measurable spaces.