论文标题
对称破裂在两个小库拉莫托型振荡器中产生嵌合体
Symmetry breaking yields chimeras in two small populations of Kuramoto-type oscillators
论文作者
论文摘要
尽管它们很简单,但耦合相振荡器的网络仍会引起有趣的集体动力学现象。但是,全球和相同耦合相同单元的对称性不允许在频率无锁的情况下解决方案,这是嵌合体出现的必要条件。因此,必须强制对称性破裂才能观察嵌合体型溶液。在这里,我们考虑当网络被完全置换对称性损坏以使网络由耦合种群组成时,会产生的分叉。我们考虑由四个相位振荡器组成的最小网络,并阐明了相位空间结构,某些参数值的(部分)集成性,以及分叉如何从完全对称性导致频率解开的弱嵌合体溶液。由于这种解决方案绕着圆环缠绕,它们必须在全球分叉场景中产生。此外,周期性薄弱的嵌合体经历了一倍的级联反应,导致混乱。带有不同频率的混合动力学不依赖于振幅变化,而是在支持混乱的最小网络中出现。
Despite their simplicity, networks of coupled phase oscillators can give rise to intriguing collective dynamical phenomena. However, the symmetries of globally and identically coupled identical units do not allow solutions where distinct oscillators are frequency-unlocked -- a necessary condition for the emergence of chimeras. Thus, forced symmetry breaking is necessary to observe chimera-type solutions. Here, we consider the bifurcations that arise when full permutational symmetry is broken for the network to consist of coupled populations. We consider the smallest possible network composed of four phase oscillators and elucidate the phase space structure, (partial) integrability for some parameter values, and how the bifurcations away from full symmetry lead to frequency-unlocked weak chimera solutions. Since such solutions wind around a torus they must arise in a global bifurcation scenario. Moreover, periodic weak chimeras undergo a period doubling cascade leading to chaos. The resulting chaotic dynamics with distinct frequencies do not rely on amplitude variation and arise in the smallest networks that support chaos.