论文标题

将随机排列分解为阶数字子渗透

Decomposing random permutations into order-isomorphic subpermutations

论文作者

Groenland, Carla, Johnston, Tom, Korándi, Dániel, Roberts, Alexander, Scott, Alex, Tan, Jane

论文摘要

两个排列$ s $和$ t $是$ k $ -similar如果可以将它们分解为subpermutations $ s^1,\ ldots,s^k $和$ t^1,\ ldots,t^k $,以便$ s^i $是订单 - iSomorphic to isomorphic to $ t^i $ $ $ $ $ $ $ $ $ $ $。最近,Dudek,Grytczuk和Ruciński提出了一个问题,即确定最低$ K $的最低$ K $,该$ k $的两个排列在随机和均匀的随机选择为$ k $ -sibillial。我们表明,两个这样的排列为$ o(n^{1/3} \ log^{11/6}(n))$ - 与高概率相似,这是紧密的,直至polylogarithmic figinal。我们的结果也概括了多个排列的同时分解。

Two permutations $s$ and $t$ are $k$-similar if they can be decomposed into subpermutations $s^1, \ldots, s^k$ and $t^1, \ldots, t^k$ such that $s^i$ is order-isomorphic to $t^i$ for all $i$. Recently, Dudek, Grytczuk and Ruciński posed the problem of determining the minimum $k$ for which two permutations chosen independently and uniformly at random are $k$-similar. We show that two such permutations are $O(n^{1/3}\log^{11/6}(n))$-similar with high probability, which is tight up to a polylogarithmic factor. Our result also generalises to simultaneous decompositions of multiple permutations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源