论文标题
散落理论与单一曲折
Scattering Theory with Unitary Twists
论文作者
论文摘要
我们研究了在基本组的单一表示的情况下,与双曲线表面相关的拉普拉斯操作员的光谱特性。遵循Guillopé和Zworski的方法,我们为扭曲散射决定因素建立了一个分解公式,并描述了$ 1/2 $的散射矩阵的行为。
We study the spectral properties of the Laplace operator associated to a hyperbolic surface in the presence of a unitary representation of the fundamental group. Following the approach by Guillopé and Zworski, we establish a factorization formula for the twisted scattering determinant and describe the behavior of the scattering matrix in a neighborhood of $1/2$.