论文标题

对称问题的同质表现

A homogeneous presentation of symmetric quandles

论文作者

Taniguchi, Yuta

论文摘要

一个问题是一个代数结构,其公理对应于结理论的雷德氏症动作。 S. Kamada介绍了一个具有良好相关性的困境的概念,后来被称为对称的问题。我们对对称难题的代数结构感兴趣。给定一个组$ g $,元素$ z $和某个子组$ h $,一个人可以获得困境。 D.乔伊斯(D. Joyce)表明,每个难题是这种难题的脱节结合。在本文中,给定一个$ g $,元素$ z,r $ in $ g $和某个亚组$ h $,我们构建了对称的Quandle。 futhermore,我们表明,每个对称的难题都是此类困境的不相交联合的同构。

A quandle is an algebraic structure whose axioms correspond to the Reidemeister moves of knot theory. S. Kamada introduced the notion of a quandle with a good involution, which is later called a symmetric quandle. We are interested in the algebraic structure of symmetric quandles. Given a group $G$, an element $z$ and a certain subgroup $H$, one can obtain the quandle. D. Joyce showed that every quandle is isomorphic to the disjoint union of such quandles. In this paper, given a group $G$, elements $z,r$ in $G$ and a certain subgroup $H$, we construct a symmetric quandle. Futhermore, we show that every symmetric quandle is isomorphic to the disjoint union of such quandles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源