论文标题

使用机器学习从中子数据中提取$α-$ rucl $ _3 $的交互参数

Extraction of the interaction parameters for $α-$RuCl$_3$ from neutron data using machine learning

论文作者

Samarakoon, Anjana M., Laurell, Pontus, Balz, Christian, Banerjee, Arnab, Lampen-Kelley, Paula, Mandrus, David, Nagler, Stephen E., Okamoto, Satoshi, Tennant, D. Alan

论文摘要

单晶非弹性中子散射数据包含有关材料结构和动力学的丰富信息。然而,与大量数据量相匹配的复杂理论模型的挑战是由计算复杂性和反向散射问题的不良性质进行的。在这里,我们利用了一个新型的机器学习辅助框架,该框架具有多个神经网络体系结构,通过高维建模和数值方法来解决此问题。在Kitaev材料上测量的衍射和非弹性中子散射的综合数据集被处理以提取其Hamiltonian。采用了半古老的Landau-Lifshitz动力学和蒙特卡洛模拟来探索扩展的Kitaev-Heisenberg Hamiltonian的参数空间。开发了一种机器学习辅助迭代算法,以绘制不确定性歧管以匹配实验数据。用于进行信息压缩的非线性自动编码器;和径向基网络用作衍射和动态模拟的快速替代物来预测不确定性的潜在自旋汉密尔顿人。采用精确的对角度计算来评估量子波动对最佳预测所选参数的影响。

Single crystal inelastic neutron scattering data contain rich information about the structure and dynamics of a material. Yet the challenge of matching sophisticated theoretical models with large data volumes is compounded by computational complexity and the ill-posed nature of the inverse scattering problem. Here we utilize a novel machine-learning-assisted framework featuring multiple neural network architectures to address this via high-dimensional modeling and numerical methods. A comprehensive data set of diffraction and inelastic neutron scattering measured on the Kitaev material $α-$RuCl$_3$ is processed to extract its Hamiltonian. Semiclassical Landau-Lifshitz dynamics and Monte-Carlo simulations were employed to explore the parameter space of an extended Kitaev-Heisenberg Hamiltonian. A machine-learning-assisted iterative algorithm was developed to map the uncertainty manifold to match experimental data; a non-linear autoencoder used to undertake information compression; and Radial Basis networks utilized as fast surrogates for diffraction and dynamics simulations to predict potential spin Hamiltonians with uncertainty. Exact diagonalization calculations were employed to assess the impact of quantum fluctuations on the selected parameters around the best prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源