论文标题

高斯流程和非欧国人空间中的统计决策

Gaussian Processes and Statistical Decision-making in Non-Euclidean Spaces

论文作者

Terenin, Alexander

论文摘要

使用高斯流程的贝叶斯学习提供了一个基础框架,以以一种平衡已知的方式与收集数据可以学到的东西进行决策。在本文中,我们开发了扩大高斯流程适用性的技术。这是通过两种方式完成的。首先,我们为高斯过程开发了路径方向的调理技术,这允许一个人表达后验随机函数作为先前的随机函数以及依赖的更新项。我们从该角度引入了广泛的有效近似,可以预先对其进行随机采样,并在任意位置进行评估,而不会随后的随机性。该关键属性提高了效率,并使在决策设置中部署高斯流程模型变得更加简单。其次,我们在包括里曼尼亚的歧管和图形在内的非欧几里得空间上开发了高斯过程模型的集合。我们为riemannian歧管和图形上标量值高斯过程的协方差内核提供了完全构建的表达式。在这些思想的基础上,我们描述了一种形式主义,用于定义矢量值的高斯流程。引入的技术允许使用标准计算方法对所有这些模型进行培训。总的来说,这些贡献使高斯流程更容易使用,并允许它们以有效和原则性的方式在更广泛的域中使用。反过来,这使得有可能将高斯流程应用于新颖的决策环境。

Bayesian learning using Gaussian processes provides a foundational framework for making decisions in a manner that balances what is known with what could be learned by gathering data. In this dissertation, we develop techniques for broadening the applicability of Gaussian processes. This is done in two ways. Firstly, we develop pathwise conditioning techniques for Gaussian processes, which allow one to express posterior random functions as prior random functions plus a dependent update term. We introduce a wide class of efficient approximations built from this viewpoint, which can be randomly sampled once in advance, and evaluated at arbitrary locations without any subsequent stochasticity. This key property improves efficiency and makes it simpler to deploy Gaussian process models in decision-making settings. Secondly, we develop a collection of Gaussian process models over non-Euclidean spaces, including Riemannian manifolds and graphs. We derive fully constructive expressions for the covariance kernels of scalar-valued Gaussian processes on Riemannian manifolds and graphs. Building on these ideas, we describe a formalism for defining vector-valued Gaussian processes on Riemannian manifolds. The introduced techniques allow all of these models to be trained using standard computational methods. In total, these contributions make Gaussian processes easier to work with and allow them to be used within a wider class of domains in an effective and principled manner. This, in turn, makes it possible to potentially apply Gaussian processes to novel decision-making settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源